REFLECTION OF MAGNETOACOUSTIC WAVES

I.. Ya. Kosachevskii

The problem of the reflection of magnetoacoustic waves at the boundary dividing an elastic
medium from a fluid medium with infinite conductivity in the presence of an arbitrary con-
stant magnetic field was treated in [1]. In writing down the boundary conditions the con-
tinuity of the tangential component of the magnetic field was used. This condition is valid
when the conductivity of the medium is finite but not when the conductivity is infinite. In
this connection a problem similar to that in [1] is solved, without employing this particu-
lar boundary condition. The amplitude conversion coefficients found for the limiting cases
of weak and strong magnetic fields coincide with the respective coefficients given in [2,3]
for media with a finite conductivity, if we allow the conductivity in the latter expressions
to become infinite.

1. The linearized equations describing the propagation of perturbations in a continuous medium with
finite conductivity have the form [4]

vy _ 8. a ivv=0"
P*v—=m(Pm+T~zk)t ‘a%'—i'PdWV—O

ot 1.1)

rot E = —¢™'9h/ 0t, divh=0, =—clvxH.

Here H is the external magnetic field, assumed to be constant; b is a small change in the magnetic
field of the wave; Eis the induced electric field; p and v are the density and velocity of the medium; c is
the velocity of light; Pjy is the stress tensor: Tjk is the Maxwell stress tensor which assumes the follow-
ing form after linearijzation:

Tix ="/a (" [HiHy + Hiby + Hyhy — V5! (H? + 2H\hy) ).
At the boundary dividing the two media the first four equations of (1.1) correspond to the boundary
conditions [5] ‘
Pang + Tam] =0, [wm] =0, [Ex]=0, [hn]=0. (1.2)
Here n and ‘T are unit vectors normal and tangential to the boundary, while the brackets denote the discon-

tinuity of the value at the boundary. It follows from the fifth equation of (1.1) together with the second and
third conditions of (1.2) that the tangential component of the velocity vector is continuous at the boundary

it} =0, (1.3)
2. In the case of plane waves in a fluid, Eq. (1.1) reduce to the system of algebraic equations
ov =2k L L Hx(kxh)
po ' 4mpo )

‘ (2.1)
Op = poaozk-v, (Dh = — k”)?(V)EH), Pik = Pﬁik

where p, and g, are the density and velocity of sound in the fluid, and p is the hydrodynamic pressure. We
neglect the viscosity of the medium.

Donetsko. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 1,
January-February, pp. 56-61, 1970, Original article submitted May 12, 1969.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

54



We assume that the wave vector k and the vector H lie in the xz plane. The dispersion equation for
waveg polarized in this plane follows from (2.1):

2 HZ
w— (L o)t docosta =0, u={g), Vo= - 2.2)

Here u and ¥, are the squares of the phase velocity and magnetic field strength in dimensionless
form, « is the angle between the vectorsk and H.The two roots uy and u, of Eq. (2,2) correspond to the
fastand slow magnetoacoustic waves.

The following relations are also obtained from (2.1):

Vx = Mvz, hx =\szy Ey = sz: — P = sz

M = p~i(k, coso — kusing), B = ku cos¢ — k, cos g (2.3)
ey, ( » )
A= PEuh(He— MH,), B=—-c—°;c; 4, Z = — B (ke M - k)

where ¢ is the angle of inclination of the magnetic field to the x axis.
3. The propagation of waves in an unbounded elastic conducting medium was treated in papers [6,7].

In an elastic medium

Pae = Muyy + 2puge, U= “2‘<m + E?i)

where A and p are the Lamé coefficients.

Remembering that in the case of plane monochromatic waves the displacement vector u is related
to the velocity vector by the relation

and taking (1.1) into account, we have

®?v = a%k (kv) — bka(kgv)+% H % (kxh)
(3.1)

oh = —kx(vx H), az:ﬁ‘p_z&, b? = % .

Here « and b are the velocities of purely elastic longitudinal and transverse waves, and p is the den~-
sity of the elastic medium.

The following dispersion equation can be obtained from (3.1) for waves polarized in the xz plane:

w— (1 + &+ ) u+ &+ pcos’a + & sin?a) =0

The roots u; and u, of this equation correspond to the fast and slow magnetoacoustic waves.

In accordance with (3.1) we have the following relations for waves in the elastic medium:

vy = M'UZ, hx — szv Eu\= sz’ Pzz = ZUZ, sz = sz
M = p~t[(1 — &)k, cosa — k(u — E) sin ¢l
p=Fu—E)cosg — (1 —E)kcosqg
By s ..
A:Euh(Hx—MHz)! B"‘_—E_k—zA
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2= — Pkl (L= 20k M], X = — D M) (3.9)

4. Let us assume that the boundaries of the fluid and elastic medium coincide with the xy plane.

From (1.2) and (1.3), the boundary conditions for waves polarized in the xz plane assume the form

[Pr— g He] =0, [Prt g Hib] =0, 1=0, []=0. @.1)

The waves which are polarized perpendicular to the xz plane (Alfven waves), propagate independently

and will not be treated here.

Let a fast magnetoacoustic wave be incident on the boundary from the side of the fluid (Fig. 1). The

incident wave excites a system of four waves at the boundary; two magnetoacoustic waves in the fluid
and two magnetoelastic waves in the elastic medium. Quantities referring to the incident perturbations
will be denoted by primes. Taking the amplitude v;,' to be unity,we write down the velocity field in the

v=3

fluid
’ 2
vy = —exp{—i [of — (B'r)]} + D Wyexp{—i [at — (kr)]}
va=1
and in the elastic medium
4 .
v, = — NW,exp{—i[ot— (k7)]},

Here Wy are the amplitude conversion coefficients.

We can obtain a system of equations for determining these coefficients from conditions (4.1) taking

(2.3) and (3.3) into account.
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& 4
Sw,=1, Z(Zv——%Av)WV:ZI'——%AI’
V=t v=t (4.2)

4 4
SMWo=My, DX FEANWI=EAL Ki=Ka=0.
y=1 =g

The solution of system (4.2) has the form

W, = A {E (M, — My) N + mQy'l + ¥ sin? ¢ (P + mRy')}

W, = A &My — My) N+ mQy'] + ¢ sin® @ (P + mRy')} 4.3)
Wo=(My — Moy 1My — My — (My — My) Wy — (Mg — M) Wil (%
We= (Ms — Mo [My — My — (Ms — My) Wy — (My — M) Wil .

Here

A=E[(M, — M) N + mQ] + P sin® ¢ (P + mR)

N=( — M,ctg0y) [(1 — 28) My — ctg 0,1
— (1 — M, ctg 05) [(1—28) M4 — ctg 0,]

Q=1IM,— Mz + M;M, (ctg 6, — ctg 0,)1 (M, — M, + ctgh, — ctgh;)
~+ (M, otg 0, — M, ctghy,) (M, ctg 8, — M, ctg 6,)

R= (M, + ctg 0;) v, — (My + ctg 61) ¥o, P = I'sva — I'ays

po= (My — My) (ctg ¢ — My) ctg 8y + (My — M.) (ctg ¢ — My)-ctg 0,
+ (My — M) (ctg @ —iMa) ctg 0, (v=1,2)



Yo = (My — My) (ctg ¢ — My) ctg 8y + (M, — M) (ctg @ — My) ctg 6,
+ (My — M) (ctg ¢ — M,) ctg b, (v= 3,4)

Iy=E8(1— M, ctg Oy) ctg @+ (1—2E) M 4— ctg Oy, m = poay®/ pa’ .

The quantities Py, Qy!, Ry’ are obtained from P, Q, and R, respectively if My, is changed to M| in

the latter and ctg 0, replaced by ctg 6,".
For a weak magnetic field (¥ < 1, ¥ < 1) we have, with an accuracy to the dominant terms,

7 i e‘z . ' ©
6,")=80;, sind = s"l;‘E = %’sm 8; = —lzisme,_, (4.4)
u =1+, sinoy, Uy = VP, cos? 0y = P o sin? @ (1 + 21 P,*cos ¢ sin 6;)]
Uy =1+ Psin?a,§ us==E -+ P cosPay, M, = tgb,
M, = — ctg 8, — ctg ¢/sin? 0,, Mg = -- tgl,, M, = ctgly,
MII = Ml(‘
The conversion coefficients assume the form
o PoY? o T VGYF [po\
W, =Wy"— szsigfﬁp_ cosB, Wy=(1—W;°cos28; + ;/slfncp (%") cos 0
. 2 oy s PYO [po\' .
W, = VTpoYsm‘Gl, Wy=2(1— W,°)sin?6, — %‘T@i) sin @, .
_ Bsing X o 8in (284 — B) o__ Pos
Y= Zn+ Z1° [Z“Lgel+zl cos 03 ] L= co8 61
o (4.5)

_ Rsing ° . o8in (204 — 91)] o __
F= Zn + Z2° [Zl tg 05 -+ Zs Jcos 61 Ly’ = cos Oy
pb

(Z° + Z3° cos 20, - Z4°sin 26, tg 0;), Z,° = Sos0.

__ 2sing
®=z 1

Woe = Zn—2v 7, = Z.° cos? 20, + Z,° sin? 20

1 Zn__i_zlor 11._.3 47 4 4 0

The quantities W,” and Zp, are the reflection coefficient and the total acoustic impedance of the

boundary in the absence of a magnetic field respectively [8].
Expressions for the coefficients W, were obtained in paper [2] for media with a finite conductivity

in the presence of a weak magnetic field. If we allow the conductivity to become infinite in these expres-—

sions we obtain Eqs. (4.5).
In the opposite limiting case of a strong magnetic field (¥ > 1, ¥ > 1)

oo\ Lz v
’ - Po \m= .
61 = Gl, Sin 93 = (%) sin 91, Ct:g 92 : SITBLEE%I_{E — Ctg P . 6)
1 Y \h a—Bege (4.
ctgy = sin O3 sin @ <1 1 Ectg? q)) 1+Ectg®e

Uy =Py + sin? oy, u, = cosPa, — Y/, Pyl sin? 2a,
uy =P + sinag + E-cos? a, Myy=M=M;=—1g¢
ug == cos®ory + & sinfoy — Y071 (1 — E)? sin? 204, M, = M, =—cig 9.

In this case Egs. (4.3 give the following expressions, accurate to terms

N
£ i ¥
1

_ nhg—m . 2ny

| —-r Wl——ns-{—nl’ Ws—ns—i—ﬂl .
%fz W, — 2nspa [(1 — & — m) cos (83 — @) sin @ — £ sin 5]
AL Ay - V¥ (ns+m)(pa VI-Ectg? @ + poac) cos ¢
ng = p' cos 0,.

W4='_ W21

4.7)

ny == Py’ cos By,



If we set £ equal to zero here, we obtain expressions for the reflection
] __r coefficients at the boundary of two fluid media, which coincide with the corre-
sponding equationsof paper [3].

y Ul Ny, For the case in which the slow magnetoacoustic wave is incident on the
boundary, the coefficients Wy, are found from expressions (4.3) by reversing
Fig. 2 the indices 1 and 2.

5. Let the fast magnetoelastic wave be incident on the boundary of the fluid from the elastic medium
(Fig. 2).

Proceeding as before we find the following expressions for the amplitude coefficients from the
boundary conditions:

Wy = (M, — My My — My’ — (My — M) Wy — (M, — M) Wil

W, = (M; — M) My — My’ — (My — M) Wy — (My — My) Wl (5.1)
Wy = A {E (M, — M) N+ mQy’] + 4 sin® @ (Ps' 4+ mRy)}

We= A1 {E (M, — MNS + mQy] -+ ¥ sin® ¢ (P + mR()} .

Here Ny', Py', Qy', Ry' resultfrom N, P, Q, R, respectively when My is replaced by M;' and ctg 6, by ctg 6.

For a weak magnetic field we have from (5.1)

Wy= (1 — W;")sec 20, + le“Fy‘cos 8, Wy=V 1 Fsinb,

2s8in@
'd o V&Fz Ro ll?
WS:‘:WS —m(;) cOos 93 (5 2)
- _roysin?0s | VOFO (po\" .
Wi=—2(1—=W, )005294 + P ) <?) Sme?
Wy = Z—_;—ﬂ (Z1° — Z4° cos? 26; + Z° sin? 26,)
- d
where W3° is the reflection coefficient for a purely elastic longitudinal wave [8].
For a strong magnetic field Egs. (5.1) give
2n3 __ny—0ng ‘ — _ W
Wy = n1+ns’ W3~n1+n3’ Wa= We
_ 2ngpa’[1 —E—m)cos (01 @) sinp —E sin 0:] . (5.2)

47 a0 Vo (m+ng) (pa VI FE otg® @ + poso) cos @

If a slow magnetoacoustic wave is incident on the boundary, expressions for the coefficients W, can
be obtained from (5.1) by reversing the indices 3 and 4.
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